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Abstract

The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic
systems depends strongly on the method of storing and evaluating the many-particle wave
function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 246406 (2001);
D. Alfè and M. J. Gillan, Phys. Rev. B, 70, 161101 (2004)] has demonstrated the reduc-
tion of the O(N3) cost of evaluating the Slater determinant with planewaves to O(N2)
using localized basis functions. We compare four polynomial approximations as basis
functions – interpolating Lagrange polynomials, interpolating piecewise-polynomial-form
(pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these ba-
sis functions provide a similar speedup relative to the planewave basis. The pp-splines
have eight times the memory requirement of the other methods. To test the accuracy of
the basis functions, we apply them to the ground state structures of Si, Al, and MgO.
The polynomial approximations differ in accuracy most strongly for MgO and smooth-
ing B-splines most closely reproduce the planewave value for of the variational Monte
Carlo energy. Using separate approximations for the Laplacian of the orbitals increases
the accuracy sufficiently to justify the increased memory requirement, making smooth-
ing B-splines, with separate approximation for the Laplacian, the preferred choice for
approximating planewave-represented orbitals in QMC calculations.
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1. Introduction

Quantum Monte Carlo (QMC) methods can accurately calculate the electronic struc-
ture of real materials.[1, 2] The two most commonly used QMC methods for zero temper-
ature calculations are variational Monte Carlo (VMC), which can compute expectation
values of operators for optimized trial wave functions, and fixed-node diffusion Monte
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Carlo (DMC), which improves upon VMC results by using the imaginary-time evolu-
tion operator to project the trial wave function onto the ground state subject to the
fixed-node boundary condition.[3] QMC has been used to calculate a variety of prop-
erties such as cohesive energies, defect formation energies, and phase transition pres-
sures. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] The accuracy is limited
mostly by the fixed-node approximation [3, 20] and the computational power required to
reduce statistical uncertainty (the subject of this paper).

Minimizing the time for a QMC calculation of a property (e.g., energy) to a given
statistical accuracy requires minimizing the evaluation cost of the orbitals – used in the
trial wave function Ψ(R) – at each sampling point R of the electron coordinates. The
QMC energy, EQMC, is a weighted average of the local energy,

EL(R) =
HΨ(R)

Ψ(R)
, (1)

at NMC stochastically-chosen configurations:

EQMC =
1

NMC

NMC
∑

i=1

wiEL(Ri). (2)

The statistical uncertainty in EQMC is proportional to 1/
√
NMC. Thus, repeated

evaluation of the wave function Ψ(R) and the HamiltonianH acting on the wave function,
which requires both the wave function and its first and second derivatives, reduces the
statistical uncertainty in the calculated property. The root-mean-square fluctuation of
the local energy in VMC

σVMC =

√

√

√

√

1

NMC

NMC
∑

i=1

(EL(Ri)− EVMC)2 (3)

indicates the quality of Ψ(R) because the individual local energies equal the average when
Ψ(R) is an exact eigenfunction of H. QMC simulations frequently use the Slater-Jastrow
form of the wave function, [1] Ψ(R) = J(R)D(R), where J(R) is a Jastrow factor [22]
(in this work, a simple electron-electron Jastrow with no free parameters is used to
impose the electron-electron cusp condition) and D(R) is a Slater determinant [23] of
single-particle orbitals.

The orbitals used in QMC wave functions typically come from density-functional or
Hartree-Fock calculations and, in periodic systems, are Bloch functions of the form

φnk(r) = unk(r)e
ik·r, (4)

where unk(r) has the periodicity of the crystal lattice, n is the band index, and k the
crystal momentum. The periodic function, unk(r), is represented by a linear combination
of basis functions. Frequently QMC calculations are performed using simulation cells
larger than the primitive cell to reduce Coulomb finite-size errors. However, since unk(r)
is periodic in the primitive cell, representing it by basis-function expansions in just the
primitive cell is sufficient to simulate larger cells.

The computational cost per N -electron Monte Carlo move of evaluating the Slater
determinant is O(N3), when spatially-extended basis functions are used to represent the
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orbitals, since N orbitals are evaluated for each of the N electrons, and each orbital
is a sum over O(N) basis functions. Spatially-localized basis functions avoid the linear
scaling of the number of basis functions with system size since only those basis functions
that are non-zero at a given point contribute to the wave function value at that point,
resulting in O(N2) scaling.

Planewaves, despite their undesirable scaling, are a popular choice for basis functions
for the density-functional and Hartree-Fock methods because of their desirable analytic
properties. The advantage of a planewave representation is that planewaves form an
orthogonal basis, and, in the infinite sum, a complete single-particle basis. Thus, adding
more planewaves to a truncated basis (as is always used in practice) systematically im-
proves the wave function representation towards the infinite single-particle basis limit.
The energy of the highest frequency planewave included in the sum, the cutoff energy
Ecut = ~

2Gcut
2/2me, characterizes a given truncated planewave basis by setting the

smallest length scale about which the wave function has information. Thus, a planewave-
based orbital φPW is a sum over each planewave G below the cutoff multiplying a real-
or complex-valued coefficient cGnk unique to that planewave, the band index n, and the
crystal momentum k:

unk(r) = φPW(r) =
∑

G

cGnk exp(ıG · r). (5)

Williamson et al. [24] first applied the pp-form spline interpolation method to ap-
proximate planewave-based orbitals by localized basis functions in QMC calculations.
They report an O(N) reduction in the time scaling. Alfè and Gillan,[25] introducing the
related method of B-spline approximation in QMC, report significant reduction in the
calculation time while maintaining planewave-level accuracy.

This work compares the three methods previously applied to QMC (pp-splines,[24]
interpolating B-splines, [26], and smoothing B-splines[27, 25]) with a fourth method
(Lagrange polynomials) originally implemented by one of us in QMC but heretofore un-
published. Section 2 introduces, compares and contrasts the four methods. Section 3.1
compares the accuracy of the polynomial methods in reproducing the QMC energies and
fluctuations in the local energy relative to the corresponding values from the planewave
expansion. Section 3.1 also studies whether it is advantageous to construct separate ap-
proximations for the gradient and the Laplacian of the orbitals. Section 3.2 compares the
time cost in QMC calculations of polynomial methods and planewave expansions. Sec-
tion 3.3 compares the memory requirements of the polynomial methods and planewaves.
Section 4 concludes that higher accuracy and lower memory requirement make smooth-
ing B-splines, with a separate approximation for the Laplacian, the best choice. The
appendix describes the details of the approximating polynomials.

2. Methods

The four methods of approximating the planewave-represented single-particle orbitals
with polynomials that we study in this paper are: interpolating Lagrange polynomials,[28]
interpolating piecewise-polynomial-form splines (pp-splines)[29] (often simply called in-
terpolating splines), and basis-form splines (B-splines) (both interpolating[30, 29] and
smoothing[27, 25]). For the pp-splines, we employ the Princeton pspline package,[31]
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and, for interpolating B-splines, the einspline package,[32] interfaced to the champ

QMC program.[33]
Common features. The methods share several aspects. They construct the orbital ap-

proximation by a trivariate polynomial tensor product. Each of the methods can employ
polynomials of arbitrary order, n. We use cubic polynomials, the customary choice. The
methods transform the cartesian coordinates to reduced coordinates prior to evaluating
the polynomial approximation (see Eq. (8) and the Coordinate paragraph). They use a
grid of real-space points with associated coefficients and have a natural grid spacing de-
fined by the highest-energy planewave in the planewave sum representing the orbital (see
Eq. (6) and the Grid paragraph). They share two possibilities for evaluating the required
derivatives of a polynomial-represented function: (1) derivatives of the polynomials or
(2) separate polynomial approximations of the planewave-represented derivatives.

Distinctive features. As Lagrange-interpolated functions have discontinuous deriva-
tives at the grid points, ensuring continuity in the derivative-dependent energies requires
a separate interpolation for each of the components of the gradient and for the Laplacian
of the orbitals, increasing the memory requirement by a factor of five. In contrast to
Lagrange interpolation, splines of degree n have continuous derivatives up to order n− 1
at the grid points, and, thus, the gradient and Laplacian of the splined function can
approximate the gradient and Laplacian of the planewave sum, though this choice leads
to a loss of accuracy. Spline functions have two free parameters in each dimension that
are used to set the boundary conditions. Since planewave-based orbitals are periodic,
we choose the boundary conditions to have matching first and second derivatives at the
boundaries in each dimension. The formulation of both B-splines and pp-splines may be
either interpolating (exact function values at the grid points) [32] or smoothing.[27, 25]
Smoothing splines are advantageous when the data is noisy, but this is not the case in
our application. Instead our rationale is the following: The planewave coefficients of each
orbital specify that orbital, and the particular form of smoothing spline we use [27, 25]
is constructed to exactly reproduce the nonzero coefficients (see Appendix Appendix
A.3.2). Since fixing the values at the grid points and specifying the boundary condi-
tions uniquely determines the interpolating spline function, interpolating B-splines and
pp-splines yield identical function values. [29] Due to the reduced number of coefficients
stored per point, interpolating B-splines are preferable to pp-splines provided the time
required for their evaluation is not larger than for pp-splines.

Grid. Each of the interpolation methods permits either uniform or nonuniform grids.
For simplicity, we employ uniform grids, but the number of grid points in each dimension
need not be the same. The highest-energy planewave in the planewave sum represent-
ing a given orbital defines a natural maximal grid spacing, above which short length
scale information is lost. One point per maximum and minimum of the highest-energy
planewave Gmax, or two points per wavelength, λmin = 2π/Gmax, defines this natural
spacing hnatural:

hnatural =
λmin

2
=

π

Gmax

. (6)

Coordinates. To simplify the form of the polynomials for the evaluation of the splines,
we formulate the methods such that the point where the function is evaluated lies in the
interval [0, 1) in each dimension. The spline evaluation for a given point requires the co-
efficients at the four neighboring grid points in each dimension and requires transforming
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the Cartesian coordinates to reduced coordinates. The primitive-cell lattice vectors of
the crystal ai need not be orthogonal. The reduced vector, r̃ = (r̃1, r̃2, r̃3) = (x̃, ỹ, z̃),
corresponding to the Cartesian vector r, is

r̃i = Ngrid,i

((

a−1r
)

i
− ⌊

(

a−1r
)

i
⌋
)

− (7)

⌊Ngrid,i

((

a−1r
)

i
− ⌊

(

a−1r
)

i
⌋
)

⌋,

where ⌊ ⌋ is the floor function, which returns the integer part of a number and a is the
3 × 3 matrix of lattice vectors ai. Multiplying the Cartesian coordinate by a−1 trans-
forms it to crystal coordinates. Subtracting the integer part of the crystal coordinates
forces the coordinate inside the primitive cell, restricting the magnitude of the coordinate
values to be between zero and one. Multiplying the crystal coordinates by the number
of grid points Ngrid,i along the ith lattice vector transforms the crystal coordinates into
units of the grid point interval. Subtracting the integer part of the interval-unit crystal
coordinate (i.e., the index of the grid point smaller than and closest to ri) yields the
reduced coordinate r̃, each component of which is in the interval [0, 1). To obtain the
Cartesian coordinate gradient and Laplacian starting from the reduced coordinate gra-
dient and Hessian requires we use the chain rule, yielding ∇φ(r) = Ngrid,i(a

−1)T∇̃φ(r̃)
and ∇2φ(r) = Ngrid,i

2 ∑

i,j((a
−1)(a−1)T)ij∂

2φ(r̃)/∂r̃i∂r̃j . Appendix Appendix A gives
the explicit forms of the approximating functions.

3. Results

Three quantities compare the performance of Lagrange interpolation, pp-spline inter-
polation, B-spline interpolation and B-spline smoothing, within quantum Monte Carlo
calculations of periodic systems: (i) the accuracy in reproducing the planewave orbital
values, (ii) the speedup from the planewave-based calculation, and (iii) the computer
memory required.

The results presented in this section are obtained for single-particle orbitals at the Γ
point, that are obtained with the LDA exchange-correlation functional in density func-
tional theory and Troullier-Martins pseudopotentials. [34], 1

3.1. Accuracy

To understand the accuracy of the polynomial approximation to the planewave sum
in the context of QMC, we compare the error in the orbital value, gradient of the orbital,
Laplacian of the orbital, the total VMC energy, and the root-mean-square fluctuation
in the VMC local energy relative to the corresponding quantity computed using the
planewave sum. Increasing the planewave cutoff tests the accuracy of the approximations
as the planewave basis becomes more complete. 2

1Mg – valence configuration: 2s22p63d0.1, cutoff radii: = 1.20, 1.50, 1.80a.u. respectively. O – valence
configuration: 2s22p43d0, cutoff radii = 1.0, 1.0, 1.0 a.u. respectively with Hamann’s generalized state
method [35] for the d-channel. Si – valence configuration: 3s23p23d0, cutoff radii = 2.25, 2.25, 2.25 a.u.
respectively. Al – valence configuration: 3s23p13d0, cutoff radii = 2.28, 2.28, 2.28 a.u. respectively with
the generalized state method for the d-channel.

2Reducing the grid spacing for fixed planewave cutoff results in all quantities converging to their
planewave values for the selected cutoff. [36]
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We find that the choice of k-point in our test does not affect the conclusions as
similar results were obtained for various k-points (Γ, L, and X high-symmetry points in
diamond Si) and different simulation cell sizes (2, 8, 16, and 32-atom cells in diamond
Si). However, significant differences in accuracy of the approximations occur for the
three different materials tested, diamond Si, fcc Al and rock-salt MgO. [36] Since the
approximation methods show the greatest differences from each other for the case of
MgO in the rock-salt structure, we focus here on those results.

Figure 1 shows the relative mean absolute error in the orbital, its gradient, and its
Laplacian as a function of the planewave cutoff for the four approximation methods at
natural grid spacing in rock-salt MgO. The relative mean absolute error is the mean
absolute error divided by the mean absolute value computed from the planewave sum.
Since pp-splines and interpolating B-splines give identical function values, they lie on a
single curve and set of points.

For each of the approximations, the gradient and Laplacian used by the QMC cal-
culation can be obtained either by taking derivatives of the polynomial-approximated
orbital, or, by constructing separate polynomial approximations for the gradient and the
Laplacian of the planewave sum. The central and lower panels of Figure 1 show the ac-
curacy of separate approximations of the gradient and Laplacian of the planewave sum.
When separately approximating any derivatives of the orbitals, the resulting energy need
not be an upper bound to the true energy, but the separate approximations recover the
planewave value in the limit of infinite basis set.

Spline interpolation is more accurate than Lagrange interpolation for all planewave
cutoffs. Splines utilize all the tabulated function values (a global approximation) to
enforce first and second derivative continuity across grid points, whereas Lagrange in-
terpolation uses just the closest 64 points (a local approximation) and has derivative
discontinuities at the grid points. This leads to larger fluctuations in the error of La-
grange interpolation compared to splines.

Figures 2 and 3 show the quantities of importance to QMC calculations, the total
VMC energy EVMC and the standard deviation of the local energy σVMC, respectively,
as a function of planewave cutoff in rock-salt MgO for the four approximations. The de-
viations of EVMC and σVMC from the planewave values reflect the errors in the orbitals,
their gradients and Laplacian. Smoothing B-splines are more accurate than interpolating
splines, which in turn are more accurate than Lagrange interpolation. Furthermore, sep-
arately approximating the Laplacian in the spline approximations significantly improves
the accuracy of EVMC and σVMC. The standard deviation of the local energy σVMC is
more sensitive than the total energy EVMC to the errors in the approximations because
errors in the local energies partially cancel when averaging the local energy to obtain
EVMC. In all systems tested, convergence of EVMC to within 1 mHa is observed for
planewave cutoff energies 9-25 Ha smaller than for the convergence of σVMC to the same
level.

3.2. Speedup

Figure 4 illustrates that the three methods of polynomial approximation speed up
the planewave calculation by the same factor which scales as O(N). Tests on three
different computer platforms (3.0 GHz Intel Pentium 4, 2.4 GHz Intel Xeon, 900 MHz
Intel Itanium 2) show that the time scaling (in seconds) with the number of atoms N
for the approximating polynomials is of the order of 10−4 N2 + 10−6 N3 compared to
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Figure 1: (Color online) Relative mean absolute error of the orbitals, gradient of the orbitals, and
Laplacian of the orbitals as a function of planewave cutoff in rock-salt MgO at natural grid spacing
for each of the approximation methods: Lagrange polynomials (squares), pp-splines and interpolating
B-splines (diamonds), and smoothing B-splines (triangles). Error bars indicate one standard deviation
from the mean of the data point. The error in the gradient and Laplacian of the orbitals is the error
in a direct approximation of the gradient and Laplacian, respectively, of the orbital, not the gradient or
Laplacian of an approximation of the orbital. The large fluctuation in the error of the Laplacian is due
to the small, stochastically chosen sample used to calculate the mean. Smoothing B-splines show the
smallest error relative to the planewave value at all grid spacings although the statistical uncertainty in
the average over the components of the gradient obscures that result.
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Figure 2: (Color online) VMC total energy as a function of planewave basis cutoff in rock-salt MgO
for each of the approximation methods at the natural grid spacing for that cutoff. Error bars on
points indicate one standard deviation of statistical uncertainty in the total energies. Smoothing B-
splines with separate approximations for the orbitals and the Laplacian of the orbitals lie within one
standard deviation of statistical uncertainty of the planewave value for all cutoffs tested. (Note: Lagrange
polynomials appear on the figure only at a cutoff of 250 Ha [≈ 6800 eV]).
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Figure 3: (Color online) Root-mean-square fluctuation of the VMC local energy, σ, as a function of
planewave basis cutoff in rock-salt MgO for each of the approximation methods at the natural grid
spacing for that cutoff. Error bars on points indicate one standard deviation of statistical uncertainty in
the values. Once the planewave value has converged, near 120 Ha (≈ 3270 eV), the smoothing B-splines
with a separate approximation for the Laplacian is within statistical uncertainty of the planewave σ.
(Note: Lagrange polynomials and smoothing B-splines without separate approximation for the Laplacian
appear on the figure only at a cutoff of 250 Ha[≈ 6800 eV]—interpolating B-splines without separate
interpolation for the Laplacian do not appear at all on this scale)
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Figure 4: (Color online) VMC time per Monte Carlo step versus number of atoms. All three ap-
proximations speed up the planewave calculation by a factor of O(N) with nearly the same prefactor,
recommending all approximation methods equally on the basis of speed. Further optimization of the
smoothing B-splines routines has reduced the time scaling pre-factor by an order of magnitude from the
data shown here. The similarity in form of the approximation methods (see Eqs. (A.3), (A.12), (A.19))
and the fact that all methods need to retrieve a similar number of coefficients from memory account for
the similarity in evaluation speed despite differences in approximation properties.

the scaling for planewaves of 10−3 N3. The difference in computational time between the
Lagrange polynomials and the B-splines is less than 10% and varies between the different
computers.

While pp-splines store eight coefficients at each grid point, and Lagrange interpolation
and B-splines store just one, all methods require accessing the same number of coefficients
(64 for cubic polynomials in 3D) from memory for each function evaluation. However,
Lagrange and B-splines access one coefficient from each of the 64 nearest-neighbor points
whereas pp-splines access eight coefficients from each of the eight nearest-neighbor points.
This reduction in accessed neighbor points could make pp-splines faster since the data
access is more local. However, the calculations show that, for the implementation of pp-
splines used here, [31] no speedup occurs in practice. Additionally, further optimization
of the smoothing B-splines routines has reduced the time scaling pre-factor by an order
of magnitude.
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3.3. Memory

At the natural grid spacing, the polynomial approximations store a total number of
values equal to or greater than the number of planewaves. 3 Trivariate, cubic pp-splines
store eight values per grid point for each function, namely the function values, the three
second derivatives along each direction, three mixed fourth-order derivatives, and one
mixed sixth-order derivative (see [31]] or Eq. (A.13) for details). Lagrange interpolation
and B-splines store only one value per grid point for each function. In the case of
Lagrange interpolation, the stored values are the function values, whereas, for B-splines,
the stored values are the derived B-spline coefficients (see Appendix Appendix A).

All the approximations can obtain the gradient and the Laplacian by either taking
appropriate derivatives of the splined functions or by generating separate approximations
for the gradient and the Laplacian. Separate approximations for the Laplacian increase
the memory requirement by a factor of two, and, separate approximations for the Lapla-
cian and the gradient increase the memory requirement by a factor of five. Since the
gradient and Laplacian of the Lagrange interpolation are not continuous, we always use
separate approximations for the Laplacian and the gradient when using Lagrange inter-
polation. For splines, the increased accuracy achieved by using separate approximations
warrants using separate approximations for the Laplacian but not for the gradient.

4. Conclusions

The four polynomial approximation methods – interpolating Lagrange polynomials,
interpolating pp-splines, interpolating B-splines, and smoothing B-splines – speed up
planewave-based quantum Monte Carlo (QMC) calculations by O(N), where N is the
number of atoms in the system. At natural grid spacing, smoothing B-splines are more
accurate than interpolating splines, which are in turn more accurate than Lagrange inter-
polation for all planewave cutoff values tested. Separately approximating the Laplacian
of the orbitals results in the total energy and root-mean-square fluctuation of the local
energy to be closest to the values obtained using the planewave sum. High accuracy and
low memory requirement make smoothing B-splines, with the Laplacian splined sepa-
rately from the orbitals, the best choice for approximating planewave-based orbitals in
QMC calculations.
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the use of his pseudopotential generation and density functional programs.

[1] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
[2] M. P. Nightingale and C. J. Umrigar, eds., Quantum Monte Carlo Methods in Physics and Chem-

istry, NATO ASI Ser. C 525 (Kluwer, Dordrecht, 1999).
[3] J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
[4] The Periodic Solids page on the QMC wiki links to Refs. 5-19 and all QMC solid-state references

in Foulkes et. al. (2001)., URL http://www.qmcwiki.org/index.php/Periodic Solids.
[5] G. Yao, J. G. Xu, and X. W. Wang, Phys. Rev. B 54, 8393 (1996).
[6] R. Gaudoin, W. M. C. Foulkes, and G. Rajagopal, Journal of Physics: Condensed Matter 14, 8787

(2002), URL http://stacks.iop.org/0953-8984/14/8787.
[7] R. Q. Hood, P. R. C. Kent, R. J. Needs, and P. R. Briddon, Phys. Rev. Lett. 91, 076403 (2003).
[8] R. Maezono, M. D. Towler, Y. Lee, and R. J. Needs, Phys. Rev. B 68, 165103 (2003).
[9] R. J. Needs and M. D. Towler, International Journal of Modern Physics B 17, 5425 (2003).
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Appendix A. Explicit Forms of Approximation Methods

Appendix A.1. Lagrange interpolation

In one dimension, the Lagrange interpolation formula for a function f(x) is

L(x) =

m+⌊n+1
2

⌋
∑

i=m−⌊n
2
⌋

ℓi(x)f(xi) (A.1)

where the basis polynomials of order n are

ℓi(x) =

m+⌊n+1
2

⌋
∏

j=m−⌊n
2
⌋,j 6=i

x− xj

xi − xj

. (A.2)

where the grid point m is such that xm ≤ x < xm+1.
A tensor product of the one-dimensional basis constructs basis functions for repre-

senting multidimensional functions. Hence, the cubic Lagrange interpolation formula for
the 3-dimensional orbital using the reduced coordinates of Eq. (8) is

φLagr(x̃, ỹ, z̃) = (A.3)
2

∑

i=−1

ℓi(x̃)

2
∑

j=−1

ℓj(ỹ)

2
∑

k=−1

ℓk(z̃) φPW(i, j, k),

where

ℓi(x̃) =

2
∏

j=−1,j 6=i

x̃− j

i− j
. (A.4)
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or

ℓ−1(x̃) = −1

6
x̃(x̃− 1)(x̃− 2) (A.5a)

= −1

6
x̃3 +

1

2
x̃2 − 1

3
x̃

ℓ0(x̃) =
1

2
(x̃+ 1)(x̃− 1)(x̃− 2) (A.5b)

=
1

2
x̃3 − x̃2 − 1

2
x̃+ 1

ℓ1(x̃) = −1

2
(x̃+ 1)x̃(x̃− 2) (A.5c)

= −1

2
x̃3 +

1

2
x̃2 + x̃

ℓ2(x̃) =
1

6
(x̃+ 1)x̃(x̃− 1) (A.5d)

=
1

6
x̃3 − 1

6
x̃.

The basis may also be viewed as piecewise-defined functions centered at and symmetric
about the grid points. The polynomials then use grid-centered coordinates ξ = x̃ − xi,
where xi is the coordinate of the grid point associated with the polynomial:

ℓ(ξ) =























1
2
(|ξ|+ 1)(|ξ| − 1)(|ξ| − 2) =

1
2
|ξ|3 − ξ2 − 1

2
|ξ|+ 1, 0 ≤ |ξ| < 1,

− 1
6
(|ξ| − 1)(|ξ| − 2)(|ξ| − 3) =

− 1
6
|ξ|3 + ξ2 − 11

6
|ξ|+ 1, 1 ≤ |ξ| < 2,

0, |ξ| ≥ 2.

(A.6)

The first of these equations is obtained by substituting x̃ = ξ in Eq. (A.5b) or x̃ = ξ + 1
in Eq. (A.5c), and, the second by substituting x̃ = ξ − 1 in Eq. (A.5a) or x̃ = ξ + 2 in
Eq. (A.5d). This basis does not have any continuous derivatives across grid points.

Appendix A.2. Piecewise-polynomial-form splines

Interpolating splines of degree n are piecewise nth-order polynomials that reproduce
the function values at the grid points. The derivatives of the interpolating splines are
continuous up to order n − 1 across the grid points but do not precisely match those
of the function being approximated. In d dimensions, the implementation of pp-splines
that we employ [31] stores 2d coefficients at each grid point. These coefficients are the
function values and the 2d − 1 second derivatives.

In one dimension, the cubic pp-spline-represented single-particle orbital is:

φpp−spl(x̃) =

2
∑

κ=1

1
∑

i=0

sκi (x̃) σ
κ
i . (A.7)
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The cubic pp-spline basis polynomials sκi for uniform grid spacing are: [42]

s10(x̃) = −x̃+ 1 (A.8a)

s20(x̃) = −1

6
x̃3 +

1

2
x̃2 − 1

3
x̃ (A.8b)

s11(x̃) = x̃ (A.8c)

s21(x̃) =
1

6
x̃3 − 1

6
x̃. (A.8d)

In the grid-centered picture, the basis functions are:

s1(ξ) =

{

−|ξ|+ 1, 0 ≤ |ξ| < 1,

0, |ξ| ≥ 1
(A.9a)

s2(ξ) =

{

− 1
6
|ξ|3 + 1

2
ξ2 − 1

3
|ξ|, 0 ≤ |ξ| < 1,

0, |ξ| ≥ 1.
(A.9b)

The cubic pp-spline coefficients σκ include the planewave values φPW at the grid points
and the constructed second-derivatives: [31]

σ1
i = φPW(x̃i) (A.10a)

σ2
i =

∂2φpp−spl(x̃)

∂x̃2

∣

∣

∣

∣

x̃i

(A.10b)

The second derivatives are obtained by imposing the condition that the first and sec-
ond derivatives be continuous at the grid points and two additional boundary conditions,
which results in a matrix equation with a diagonally dominant matrix. [42] For periodic
boundary conditions, the matrix equation is tridiagonal with corner elements



















4 1 0 0 . . . 0 0 0 1
1 4 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
1 0 0 0 . . . 0 0 1 4



















×

















σ2(x̃1)
...
σ2(x̃i)
...
σ2(x̃Ngrid,x)

















(A.11)

=
6

h2





















φPW(x̃Ngrid,x
)− 2φPW(x̃1) + φPW(x̃2)

φPW(x̃1)− 2φPW(x̃2) + φPW(x̃3)
...
φPW(x̃i−1)− 2φPW(x̃i) + φPW(x̃i+1)
...
φPW(x̃Ngrid,x−1)− 2φPW(x̃Ngrid,x

) + φPW(x̃1)





















.

In three dimensions, the cubic pp-spline-represented single-particle orbital is:

φpp−spl(x̃, ỹ, z̃) = (A.12)
2

∑

κ,µ,ν=1

1
∑

i=0

sκi (x̃)
1

∑

j=0

sµj (ỹ)
1

∑

k=0

sνk(z̃) σ
κ,µ,ν
i,j,k .
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The trivariate cubic pp-spline coefficients σκ,µ,ν include the planewave values φPW at the
knots and the constructed second-derivatives and cross-derivatives: [31]

σ1,1,1
i,j,k = φPW(x̃i, ỹi, z̃i) (A.13a)

σ2,1,1
i,j,k =

∂2φpp−spl(x̃, ỹ, z̃)

∂x̃2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13b)

σ1,2,1
i,j,k =

∂2φpp−spl(x̃, ỹ, z̃)

∂ỹ2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13c)

σ1,1,2
i,j,k =

∂2φpp−spl(x̃, ỹ, z̃)

∂z̃2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13d)

σ2,2,1
i,j,k =

∂4φpp−spl(x̃, ỹ, z̃)

∂x̃2∂ỹ2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13e)

σ1,2,2
i,j,k =

∂4φpp−spl(x̃, ỹ, z̃)

∂ỹ2∂z̃2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13f)

σ2,1,2
i,j,k =

∂4φpp−spl(x̃, ỹ, z̃)

∂z̃2∂x̃2

∣

∣

∣

∣

x̃i,ỹi,z̃i

(A.13g)

σ2,2,2
i,j,k =

∂6φpp−spl(x̃, ỹ, z̃)

∂x̃2∂ỹ2∂z̃2

∣

∣

∣

∣

x̃i,ỹi,z̃i

. (A.13h)

Appendix A.3. B-splines

B-splines are a local basis for splines with one basis function centered at each grid
point (or between grid points for even-order functions), such that each basis function is
localized and has continuous value and derivative up to some order. Then, the resulting
spline automatically has the same continuity. In 1-D, an odd-degree B-spline function,
bi(x̃), of degree n, is a piece-wise nth-order polynomial that is nonzero only in an interval
of length n+ 1 and has continuous value and derivatives up to order n− 1.

The general formula for a B-spline basis polynomial of degree k arises from a recur-
rence relation [29]

bkj (x̃) = ωk
j (x̃)b

k−1
j + (1− ωk

j+1)b
k−1
j+1 (x̃) (A.14)

where

ωk
j (x̃) =

x̃− x̃j

x̃j+k − x̃j

(A.15)

and the B-spline basis polynomial of degree zero associated with grid point x̃j is a
constant C between x̃j and x̃j+1

b0j =

{

C, x̃j ≤ x̃ < x̃j+1,

0, x̃ < x̃j or x̃ ≥ x̃j+1.
(A.16)

With this definition, the basis function bkj (x̃) is nonzero in the interval (x̃j , x̃j+k+1).

Instead, defining bkj (x̃) so that b
k
j (x̃) is nonzero in the interval (x̃j−⌊ k+1

2
⌋, x̃j+⌊ k+2

2
⌋) centers
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basis bkj (x̃) at x̃j for odd k. Choosing C = 3
2
so that the maximum of b3j equals one, the

cubic (k = 3) B-spline basis polynomials for uniform grid spacing are

b−1(x̃) = −1

4
x̃3 +

3

4
x̃2 − 3

4
x̃+

1

4
(A.17a)

b0(x̃) =
3

4
x̃3 − 3

2
x̃2 + 1 (A.17b)

b1(x̃) = −3

4
x̃3 +

3

4
x̃2 +

3

4
x̃+

1

4
(A.17c)

b2(x̃) =
1

4
x̃3. (A.17d)

In the grid-centered picture (bi(x̃) = b(x̃− x̃i)), the basis is [29]

b(ξ) =











3
4
|ξ|3 − 3

2
ξ2 + 1, 0 ≤ |ξ| < 1,

1
4
(2− |ξ|)3, 1 ≤ |ξ| < 2,

0, |ξ| ≥ 2.

(A.18)

This basis has continuous first and second derivatives across grid points.
The cubic B-spline-represented single-particle orbital in reduced coordinates is

φB−spl(x̃, ỹ, z̃) =
2

∑

l=−1

bl(x̃)
2

∑

m=−1

bm(ỹ)
2

∑

n=−1

bn(z̃) βlmn (A.19)

Appendix A.3.1. Interpolating B-spline coefficients

To determine the interpolating B-spline coefficients, we expand the function φPW(x, y, z)
at each of the grid points in the B-spline basis

Mx
∑

l=1

My
∑

m=1

Mz
∑

n=1

Bx
ilB

y
jmBz

kn βlmn = φPW(x̃i, ỹj , z̃k),

1 ≤ i ≤ Mx, 1 ≤ j ≤ My, 1 ≤ n ≤ Mz (A.20)

Bx
ilB

y
jmBz

kn = bl(x̃i)bm(ỹj)bn(z̃k) is the value at (x̃i, ỹj , z̃k) of the basis function centered

at grid point at (x̃i, ỹj , z̃k), and Mi is the number of grid points in the ith direction. Since
a cubic B-spline basis function is nonzero at only 3 grid points along the direction of each
lattice vector the matrix B is triadic. For periodic or antiperiodic boundary conditions,
B is tridiagonal with corner elements. Solving these equations in three stages [26] pro-
duces the B-spline coefficients, βlmn, at a computational cost of O(MxMyMz), which
is negligible compared to the cost of the QMC calculation. An advantage of interpo-
lating B-splines [32] over smoothing B-splines is that interpolations do not require an
evenly-spaced grid.

Appendix A.3.2. Smoothing B-spline coefficients

Instead of choosing the B-spline coefficients to construct an interpolating approxi-
mation, an alternative is to choose them such that the Fourier components of the ap-
proximation exactly match the nonzero components of the planewave expansion. This
gives

βlmn =
∑

G

cG
γG

exp(ı [G · (xl, ym, zn)]) (A.21)
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where γG is the 3D Fourier transform of an individual basis spline: [27, 25]

γG =
∏

m={x,y,z}

3 [3− 4 cos(Gm) + cos(2Gm)]

Gm
4

= 24
∏

m={x,y,z}

(

sin(Gm/2))

Gm

)4

=
3

2

∏

m={x,y,z}

sinc4
(

Gm

2

)

. (A.22)

Fourier expanding the B-spline representation of Eq. (A.19) with the choice of βlmn

given in Eq. (A.21) yields Fourier components that exactly match the nonzero compo-
nents of the planewave expansion. However, the B-spline has additional higher frequency
components that are very small in magnitude.
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